

Provided by Tramfloc, Inc.

Chemicals

Coagulant

- Usually Tramfloc dadmacs
 - 600 & 700 series
- Usage in Thickener
 - Only if overflow is too turbid for reuse in wash plant
 - Dosage $\approx 1 5$ ppm
 - May improve settling
- Usage in Dewatering
 - Usually precedes anionic flocculant
 - Overdose "kills" floc strength
 - Dosage $\approx 0.01 0.12$ lb/ton

Flocculant

- Usually Tramfloc anionics
 - Use 100 series
 - Standard or special emulsion
- Usage in Thickener
 - Required! Settling and overflow quality demand it.
 - Dosage $\approx 2 8$ ppm
 - HMWs will give better settling, but may hurt settled solids %
- Usage in Dewatering
 - HMWs may have narrow range and may blind the belt fabric
 - Dosage $\approx 0.10 0.50$ lb/ton

Dry Processing – including sizing screens

- "Manufactured Sand" is rock that mined then crushed
- Dredged sand may have sticky clays
 - "Log Washer" or other equipment may be used to get clay off
 - Clays will often make use of polyDADMACs necessary in clarification
- Wide variety of screen techniques and equipment
 - Our concern is the amount and consistency of the ultra-fine solids the material that does not settle well

Fine Sand Washing

- The main use for sand (aggregate in concrete) requires very low amounts of silt – particles smaller than 200 mesh (75 microns) – to maintain good engineering properties in the concrete
- This is the part of the plant that removes silt as a waste material

Fine Sand Washing (Wet Processing)

- Diagram shows Screw, Classifier and Hydrocyclones
 - Many operations will not use all of these
 - Selection of unit processes is made based on characteristics of raw materials and needs for finished product grades
- Wet processing has two main functions:
 - 1. Remove the unwanted silts
 - 2. Separate the fine solids into desired grades
 - Function #1 is where our silty slurries come from

Clarification

- The diagram shows a high-rate circular thickener
 - Very compact
 - Excellent performance
 - Both water and underflow solids
 - Low maintenance cost
- More plants actually use settling ponds
 - Some ponds need no chemical treatment
 - Maintenance (including labor) is high dredging ponds and hauling mud
- Some plants use simple rectangular settling tanks
 - Capital cost is lower than a high-rate thickener
 - Performance especially in settled solids concentration is not as good as a thickener

Dewatering

- The diagram shows a belt filter press supplied by Tramfloc
 - Very compact with polymer feeder and cake conveyor
 - Excellent performance
 - Cake can be conveyed and hauled easily as a dry material
 - Low maintenance cost
 - Significant chemical cost (low per ton, but many tons!)
- Some plants use draining/drying areas instead
 - Mud is pumped from thickener or dragged out of rectangular tank
 - Multiple areas are used
 - One is filled while a second is emptied and a third is draining and drying
 - No chemicals
 - High maintenance cost (including labor)

Chemical Selections

Dadmacs

- Tramfloc 620, 630, 720 and 730 series are available
- Feeding is simpler for dadmacs than emulsions
- Molecular weight seems to be less important for thickeners than for settling ponds
- Ponds may only need a dadmac
- On belt presses a dadmac fed after the Tramfloc 100's can help improve dewatering efficiency
 - Drier cake
 - Better capture
 - Higher throughput

Chemical Selections

Anionic PAM

– Dry vs. Emulsion:

- Economics and local preference will typically decide
- Dewatering performance can be hurt by excessive molecular weight (MW); Tramfloc has a broader selection of molecular weights among the drys than emulsions

- Molecular weight

- Clarification is benefited by higher m.w.
- Dewatering can be hindered (see above)
- Settling tanks often have very short retention time, so very high MW can be a real help!. Consider Tramfloc special emulsions.
- Charge, amount of anionicity, expressed as mole%
 - 10 to 50 perhaps higher