Closed Water Loop Dewatering System

Sand Screw Feed (from sizing screens)

Possible Coagulant Feed Points

- 200 mesh (75 micron) solids

Possible Flocculant Feed Points

- 400 mesh (38 micron) solids

Product

Product

Feed

Thickener

Belt Filter Press

Possible Coagulant Feed Points

Belt Wash Water

Dilution Water

Filtrate

Cake

Water for Reuse

Provided by Tramfloc, Inc.
Chemicals

Coagulant
- Usually Tramfloc dadmacs
 - 600 & 700 series
- Usage in Thickener
 - Only if overflow is too turbid for reuse in wash plant
 - Dosage ≈ 1 – 5 ppm
 - May improve settling
- Usage in Dewatering
 - Usually precedes anionic flocculant
 - Overdose “kills” floc strength
 - Dosage ≈ 0.01 – 0.12 lb/ton

Flocculant
- Usually Tramfloc anionics
 - Use 100 series
 - Standard or special emulsion
- Usage in Thickener
 - Required! Settling and overflow quality demand it.
 - Dosage ≈ 2 – 8 ppm
 - HMWs will give better settling, but may hurt settled solids %
- Usage in Dewatering
 - HMWs may have narrow range and may blind the belt fabric
 - Dosage ≈ 0.10 – 0.50 lb/ton
Process Variations

Dry Processing – including sizing screens

- “Manufactured Sand” is rock that mined then crushed
- Dredged sand may have sticky clays
 - “Log Washer” or other equipment may be used to get clay off
 - Clays will often make use of polyDADMACs necessary in clarification
- Wide variety of screen techniques and equipment
 - Our concern is the amount and consistency of the ultra-fine solids – the material that does not settle well
Process Variations

• **Fine Sand Washing**

 – The main use for sand (aggregate in concrete) requires very low amounts of silt – particles smaller than 200 mesh (75 microns) – to maintain good engineering properties in the concrete.

 – This is the part of the plant that removes silt as a waste material.
Fine Sand Washing (Wet Processing)

- Diagram shows Screw, Classifier and Hydrocyclones
 - Many operations will not use all of these
 - Selection of unit processes is made based on characteristics of raw materials and needs for finished product grades

- Wet processing has two main functions:
 1. Remove the unwanted silts
 2. Separate the fine solids into desired grades
 - Function #1 is where our silty slurries come from
Process Variations

• **Clarification**
 - The diagram shows a high-rate circular thickener
 - Very compact
 - Excellent performance
 - Both water and underflow solids
 - Low maintenance cost
 - More plants actually use settling ponds
 - Some ponds need no chemical treatment
 - Maintenance (including labor) is high – dredging ponds and hauling mud
 - Some plants use simple rectangular settling tanks
 - Capital cost is lower than a high-rate thickener
 - Performance – especially in settled solids concentration – is not as good as a thickener
Process Variations

- **Dewatering**
 - The diagram shows a belt filter press supplied by Tramfloc
 - Very compact with polymer feeder and cake conveyor
 - Excellent performance
 - Cake can be conveyed and hauled easily as a dry material
 - Low maintenance cost
 - Significant chemical cost (low per ton, but many tons!)
 - Some plants use draining/drying areas instead
 - Mud is pumped from thickener or dragged out of rectangular tank
 - Multiple areas are used
 - One is filled while a second is emptied and a third is draining and drying
 - No chemicals
 - High maintenance cost (including labor)
Chemical Selections

• **Dadmacs**
 – Tramfloc 620, 630, 720 and 730 series are available
 – Feeding is simpler for dadmacs than emulsions
 – Molecular weight seems to be less important for thickeners than for settling ponds
 – Ponds may only need a dadmac
 – On belt presses a dadmac fed after the Tramfloc 100’s can help improve dewatering efficiency
 • Drier cake
 • Better capture
 • Higher throughput
Chemical Selections

• **Anionic PAM**

 – Dry vs. Emulsion:
 • Economics and local preference will typically decide
 • Dewatering performance can be hurt by excessive molecular weight (MW); Tramfloc has a broader selection of molecular weights among the drys than emulsions

 – Molecular weight
 • Clarification is benefited by higher m.w.
 • Dewatering can be hindered (see above)
 • Settling tanks often have very short retention time, so very high MW can be a real help!. Consider Tramfloc special emulsions.

 – Charge, amount of anionicity, expressed as mole%
 • 10 to 50 – perhaps higher